Unveiling the predictive power of static structure in glassy systems

Dr Victor Bapst
Google Deep Mind

Despite decades of theoretical studies, the nature of the glass transition remains elusive and debated, while the existence of structural predictors of its dynamics is a major open question. Recent approaches propose inferring predictors from a variety of human-defined features using machine learning. Here we determine the long-time evolution of a glassy system solely from the initial particle positions and without any handcrafted features, using graph neural networks as a powerful model. We show that this method outperforms current state-of-the-art methods, generalizing over a wide range of temperatures, pressures and densities. In shear experiments, it predicts the locations of rearranging particles. The structural predictors learned by our network exhibit a correlation length that increases with larger timescales to reach the size of our system. Beyond glasses, our method could apply to many other physical systems that map to a graph of local interaction.